Update on amino acid PET of brain tumors
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Purpose of review

To give an update on the emerging role of PET using radiolabelled amino acids in the diagnostic workup

and management of patients with cerebral gliomas and brain metastases.
Recent findings

Numerous studies have demonstrated the potential of PET using radiolabelled amino acids for
differential diagnosis of brain tumors, delineation of tumor extent for treatment planning and biopsy
guidance, differentiation between tumor progression and recurrence versus treatment-related
changes, and for monitoring of therapy. The Response Assessment in Neuro-Oncology (RANO) working
group — an international effort to develop new standardised response criteria for clinical trials in brain
tumors — has recently recommended the use of amino acid PET imaging for brain tumor management
in addition to MRI at every stage of disease. With the introduction of F-18 labelled amino acids, a
broader clinical application has become possible, but is still hampered by the lack of regulatory

approval and of reimbursement in many countries.
Summary

PET using radiolabelled amino acids is a rapidly evolving method that can significantly enhance the
diagnostic value of MRI in brain tumors. Current developments suggest that this imaging technique

will become an indispensable tool in neuro-oncological centers in the near future.
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Key points

e Amino acid PET provides significant information for differential diagnosis and delineation of
cerebral gliomas in addition to MRI

e Amino acid PET shows high accuracy for diagnosis of progressive or recurrent tumor in cerebral
gliomas and brain metastases and for monitoring of therapy

e Amino acid PET is robust and attractive for clinicians because of easy scan reading



Introduction

Cerebral gliomas are, besides meningiomas, the most common primary brain tumors in adults with an
incidence of 5-6 in 100,000 [1]. Even more frequent are brain metastases with an incidence of 8 —14 /
100,000 [2]. In 2016, the classification of gliomas by the World Health Organization (WHO) was
expanded to include not only histological but also molecular parameters [3]. The most common and
also most fatal primary brain tumors are glioblastomas, corresponding to the WHO grade V. Despite
aggressive multimodal treatment strategies (resection, radiation therapy, chemotherapy), the median
survival of patients with gliomas is limited and varies from 1.5 years for glioblastoma to 2 to 3 years
for a WHO grade Il glioma and 5 to more than 10 years for a WHO grade Il glioma [4]. Based on the
WHO 2007 classification Gliomas of WHO grade Il and IV are often reported together as high-grade
gliomas (HGG), while grade Il (together with grade |, which is very rare in adults) are low-grade gliomas
(LGG). Contrast enhanced MRI is the method of first choice for brain tumor diagnosis due to its superior
soft-tissue resolution and great availability. Conventional MRI includes T1- and T2-weighted
sequences, but the capacity of standard imaging to differentiate tumor tissue from nonspecific tissue
changes may be limited, especially after therapy. In recent years, PET using radiolabelled amino acids
has developed as an important diagnostic tool. The benefits of amino acid PET over MRI for glioma
imaging are manifold including a better differentiation of equivocal lesions detected with MRI,
improved targeting of surgery and radiotherapy to the true extent of the tumor, differentiation
between tumor progression and treatment-related changes and early identification of tumor
responses to therapy. The Response Assessment in Neuro-Oncology (RANO) working group has
recently recommended the use of amino acid PET imaging for brain tumor management in addition to
conventional MRI at every stage of disease [5]. This work provides an overview of the clinical
significance of amino acid PET in various diagnostic problems of glioma and brain metastasis, current

developments and comparisons with advanced MR methods.



Radiolabelled Amino Acids for PET

In oncological diagnostics, 2-'8F-fluorodeoxyglucose (FDG), is the most widely used PET tracer but in
the brain the detection of tumor tissue is considerably hindered by the high glucose metabolism in
healthy tissue [6]. In contrast, the uptake of radiolabelled amino acids is low in normal brain tissue and
brain tumors can be depicted with a high tumor-to-background contrast. The longest-established
amino acid tracer amino acid tracer for PET is [*1C-methyl]-L-methionine (MET), which, however, is
restricted to a few neurooncology centres because the short half-life of carbon-11 (20 min) requires
an onsite cyclotron. Therefore, amino acids labelled with fluorine-18 (half-life of 109.8 min) such as
0-(2-[*¥F] - fluoroethyl)-L-tyrosine (FET) [7], 3,4-dihydroxy-6-[*¥F]-fluoro-L-phenylalanine (FDOPA)
[8], L-[3-*8F]-a-methyl tyrosine (FMT) [9], and anti-1-amino-3-'8F-fluorocyclobutane-1-carboxylic acid
(FACBC, fluciclovine) [10] are increasingly gaining acceptance owing to logistical advantages compared
with C-11 labelled amino acids. FDOPA is approved in some European Countries for clinical use,
fluciclovine has orphan drug status for brain gliomas at the US FDA [11] and FET is approved for clinical
use in brain tumor imaging in Switzerland [12]. In Europe, MET has been replaced in many
neurooncology centres by the more convenient FET, and high clinical interest in this method has led

to >10,000 FET PET scans being performed in some centres [13].

A key feature of these amino acid tracers is their ability to pass the intact BBB which allows the
depiction of the tumor mass beyond contrast enhancement in MRI [14] and to differentiate tumor
progression from non-specific, treatment-related changes[15]. Animal experiments have shown that
changes of BBB permeability after administration of dexamethasone or antiangiogenic treatment with
bevacizumab do not affect FET uptake in brain tumors [16, 17]. Furthermore, high uptake of amino

acids has been reported in many low-grade gliomas without BBB leakage [18, 19].

According to previous findings, the transport of these amino acids occurs predominantly via the
transport system L for large neutral amino acids namely the subtypes LAT1 and LAT2 although other
transport systems may play a role [20-23]. The visualization of brain tumors with MET, FET and FDOPA
is very similar [24-26] but in contrast to MET and FDOPA, FET shows a tumor-type specific tracer
kinetics, which can be helpful in differential diagnosis [27-29, 26, 30]. When using FDOPA, an increased
uptake in the striatum has to be considered, as the molecule is a precursor of dopamine, which may

cause problems in the delineation of gliomas affecting the striatum [31, 32]. A recent study comparing



MET and FACBC observed higher tumor-to-brain ratios and improved tumor delineation with FACBC

which may be advantageous [33].

The following chapters provide an overview of the significance of amino acid PET in various diagnostic
challenges. The clinical data are based exclusively on the PET tracers MET, FET and FDOPA, for which

extensive clinical experience is available.

Differential diagnosis of brain tumors

The differential diagnosis of space-occupying or diffuse lesions in the brain includes primary and
secondary (metastatic) brain tumors, haemorrhage, infarction, infections (e.g., abscess), virus
encephalitis, and inflammatory pathologies such as multiple sclerosis. The history and clinical
symptoms of the patient as well as the morphological pattern of the lesion on MRI already provide
important information on the cause of the disease. An increased amino acid accumulation has a high
predictive value for a brain tumor [34-36], however, it must be taken into account that increased amino
acid accumulation may also occur in non-neoplastic processes mentioned above, although this is much
less common [37, 35, 38-41]. Furthermore, low amino acid uptake does not exclude a brain tumor
because approximately one-third of low-grade glioma exhibit only low amino acid uptake [42, 18, 43].
Nevertheless, a meta-analysis on the diagnostic value of MET PET yielded a pooled sensitivity and
specificity of 91 % and 86 % (n = 416) for differential diagnosis of unknown brain lesions while the
performance of FDG PET was only moderate with a sensitivity and specificity of 71 % and 77 %,
respectively (n = 857) [44]. Concerning FET PET, a meta-analysis of 13 studies including a total of 462
patients yielded a pooled sensitivity of 82% and specificity of 76% for the diagnosis of primary brain
tumors [36]. A more recent study on FET PET including 174 patients reported on a high specificity (92%)
but a lower sensitivity (57%) for the differentiation of neoplastic tissue from non-neoplastic tissue [34].
Nevertheless, in the latter study a maximum tumor/brain ratio of more than 2.5 yielded a very high
positive predictive value for neoplastic tissue (98%). Thus, amino acid PET may be helpful in the
assessment of equivocal brain lesions and this investigation is frequently used for this purpose in

centres where amino acid PET is available.

Imaging of tumor spread

A number of biopsy-controlled studies have demonstrated that amino acid PET is able to detect the
metabolically active mass of gliomas more reliably than conventional MRI [45-48]. Tumor extent of

gliomas is often greater than contrast enhancement in MRI but smaller than signal abnormalities in
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T2-weighted MRI which may be helpful in planning radiotherapy (Fig. 1) [49-51]. Furthermore, amino
acid PET is under investigation to determine the extent of the residual tumor after resection [52-54].
First comparisons of amino acid PET with advanced MR methods, e.g., perfusion-weighted MRI (PWI)
showed considerably larger tumor volumes in amino acid PET than in maps of the cerebral blood
volume, a poor spatial congruence of both parameters and considerable differences in the locations
of local hot spots [55, 31, 56]. Another study observed larger tumor volumes of cerebral gliomas using
MR spectroscopic imaging (MRSI) based on elevated Cho/NAA compared with increased FET uptake
and considerable variability in the overlap of these volumes [57]. Thus, amino acid uptake and
increased CBV or Cho/NAA ratio appear to represent different properties of glioma metabolism and
the clinical relevance of these findings needs to be explored in future studies. Amino acid PET is also
used for the identification of the metabolically most active areas of the tumor for biopsy guidance
since representative tissue samples are vitally important for histological tumor diagnosis (Fig 1).
Compared with FDG PET, amino acid PET using MET and FET have been shown to be considerably more
sensitive than FDG PET for biopsy guidance [6, 58, 59]. Using FET PET, a sensitivity of 72 — 79 % has
been reported when identifying a local maximum for biopsy guidance in gliomas [6, 34]. Furthermore,
kinetic analyses of FET uptake in gliomas appear to be helpful in the identification of areas of malignant

transformation and poor prognosis [60-64, 19].

In our experience, the estimation of tumor extent and the identification of metabolically active
changes for the biopsy guidance are important clinical issues, for which amino acid PET is frequently

used in clinical practice.

Tumor grading and prognosis

The validity of PET studies using radiolabelled amino acid on the grading of cerebral gliomas is limited
by the fact that most of them are based on the previous WHO classification of 2007[65] which is no
longer valid. The actual classification includes molecular markers such as the isocitrate dehydrogenase
(IDH) mutational status and presence or absence of a 1p/19q co-deletion [3]. Based on the previous
WHO classification, the accuracy of static amino acid PET to differentiate between LGG and HGG is
moderate and ranges between 70 - 80% [66, 34]. These results are similar to those of FDG PET [67] and
perfusion-weighted MRI [68]. The evaluation of FET kinetics may achieve an accuracy of up to 90% [27,
63, 62, 69, 28, 29, 70] but relatively high uptake of amino acids in oligodendrogliomas with good
prognosis limits the utility of amino acid PET for brain tumor grading on individual basis [71, 28]. Recent
studies have focussed on the relationship of amino acid uptake with molecular markers [72-76].

Significant correlations were observed which, however, are not sufficient to allow a non-invasive
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prediction of the molecular parameters derived by PET imaging parameters alone. One study,
however, identified prognostically relevant information of FET PET beyond molecular markers [73].
Another approach is to measure uptake heterogeneity of amino acids using textural features analyses

of tracer distribution which shows potential to improve tumor grading and prognostication [77].

The prognostic value of amino acid uptake ratios is controversial but some studies have reported that
the pretherapeutic “biological tumor volume” (BTV) in amino acid PET is an independent prognostic
factor[78-80]. Furthermore, amino acid PET appears to be helpful to predict survival in the subgroup
of patients with LGG [42, 81, 18]. Especially kinetic analyses of FET uptake in LGG may be helpful to

identify areas of malignant transformation and poor prognosis [60, 43, 64, 61, 19]

In summary, amino acid PET can assist in the non-invasive grading and prognostication of gliomas, but

the method is currently of lower importance in the clinical decision-making process in this area.

The diagnosis of tumor recurrence or progression

The differentiation of early tumor progression and pseudoprogression predominantly within the first
12 weeks after chemoradiation of HGG with temozolomide [82] and between recurrent tumor and
radionecrosis upwards of 6 months after treatment is difficult with standard MRI, because pathological
contrast enhancement is equivocal [83]. Amino acid PET, especially FET PET has been shown to
differentiate progressive gliomas from pseudoprogression with high accuracy (Fig. 2) [84, 85].
Concerning the differentiation of recurrent tumor versus radionecrosis or other treatment related
changes, several studies have reported an accuracy of more than 90 % for FET or FDOPA PET [15, 86,
87]. For MET PET, a recent meta-analyses including 891 patients reported on a pooled sensitivity and

specificity of 88 % and 85 % in the differential diagnosis of glioma recurrence [88].

Similar results have been reported for the differentiation of local recurrent brain metastasis from
radiation-induced changes. In this differential diagnosis MET PET achieved a sensitivity of 90% and a
specificity of 75% [89], FET PET an accuracy of about 90 % [90, 91] AND FDOPA PET an accuracy of 76
— 90 % [92, 93]. In the latter study, FDOPA PET performed better than perfusion-weighted MRI.
Furthermore, a pilot study demonstrated that FET PET is helpful to identify pseudoprogression after

immunotherapy using checkpoint inhibitors in patients with melanoma metastases [94].



In summary, the diagnosis of tumor recurrence in gliomas and brain metastases is a major problem in
the management of glioma and brain metastasis, and in our experience, this is the most common

indication for the use of the amino acid PET.

Treatment monitoring

The assessment of radiological response of gliomas in conventional MRl is limited by the difficulty in
distinguishing vital tumor tissue and unspecific treatment effects and amino acid PET has been used
successfully for this purpose (Fig. 3) [95]. Glioblastoma patients with a decrease of FET uptake of more
than 10% after postoperative radiochemotherapy had a significantly longer disease-free survival and
overall survival than patients with stable or increasing tracer uptake [96, 79]. A reliable monitoring of
temozolomide chemotherapy could also be demonstrated with MET in patients with recurrent HGG
[97, 98] and also in some experimental therapeutic approaches such as radioimmunotherapy or
convection-enhanced delivery of paclitaxel [99, 100]. Furthermore, it has been shown that amino acid
PET using FET and FDOPA is useful to assess treatment failure of antiangiogenic treatment with
bevacizumab earlier than MRI based on RANO criteria, to overcome the problem of pseudoresponse
in MRI [101-103]. In summary, amino acid PET appears to be a sensitive marker of treatment response

which is a frequent indication for the use of this method.

Conclusions

Amino acid PET is a valuable diagnostic tool in addition to MRl in the assessment of patients with brain
tumors and brain metastases. At primary diagnosis, amino acid PET helps in equivocal situations, in
defining an optimal biopsy and in determining the extent of gliomas. The most frequent indication of
amino acid PET is to exclude pseudoprogression or radionecrosis in gliomas and brain tumors.
Furthermore, it helps to detect treatment response at an early stage and to overcome the problem of
pseudoresponse during antiangiogenic therapy. Amino acid PET appears to be attractive to clinicians
because the method is robust, image interpretation is simple and the metabolically active brain tumor
tissue is visualized with a high tumor-to-background contrast. These features suggest that the method

will continue to expand in clinical routine.
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Figures

MRI-T1-KM MRI-FLAIR FET-PET

Figure 1: Patient with an anaplastic astrocytoma WHO Grade IIl. The true extent of the tumor and the
metabollicaly most active tumor parts for biopsy guidance are difficult to identify in the contrast-
enhanced T1-weighted (A) and in T2-weighted MRI (B) but clearly depicted in FET- PET (C).

Institute of Neuroscience and Medicine, Forschungszentrum Jilich, Germany.

MRI-T1-KM MRI-FLAIR FET-PET

Figure 2: Patient with suspicion of tumor recurrence of an anaplastic astrocytoma WHO Grade Il after
resection and radiochemotherapy. Contrast-enhanced T1-weighted MRI (A) shows no clear contrast
enhancement and the FLAIR (B) large area of signal abnormality which is difficult to differentiate from
treatment related changes. In contrast, FET-PET (C) clearly depicts recurrent tumor tissue. Institute of

Neuroscience and Medicine, Forschungszentrum Jilich, Germany.
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Figure 3: Patient with an oligodendroglioma WHO grade Il after surgery and repeated chemotherapy
with temozolomide (upper row). One year later (lower row) contrast enhanced T1-weighted MRI (D)
shows no contrast enhancement and the FLAIR image (E) minor changes which are difficult to
differentiate from treatment-related changes. FET-PET (F) findings are consistent with recurrent

tumor. Institute of Neuroscience and Medicine, Forschungszentrum Jilich, Germany.
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